Biophysical evidence of arm-domain interactions in AraC.
نویسندگان
چکیده
We report development of a method for the direct measurement of the interaction between the N-terminal arm and the remainder of the dimerization domain in the Escherichia coli AraC protein, the regulator of the l-arabinose operon. The interaction was measured using surface plasmon resonance to monitor the association between the immobilized peptide arm and the dimerization domain, truncated of its arm, in solution. As expected from genetic and physiological data, the interaction is strongly stimulated by l-arabinose and is insensitive to sugars like d-glucose or d-galactose. Alterations in the sequence of the arm which physiological experiments predict either to strengthen or weaken the arm produce the expected responses.
منابع مشابه
Specific interactions by the N-terminal arm inhibit self-association of the AraC dimerization domain.
Deletion of the regulatory N-terminal arms of the AraC protein from its dimerization domain fragments increases the susceptibility of the dimerization domain to form a series of higher order polymers by indefinite self-association. We investigated how the normal presence of the arm inhibits this self-association. One possibility is that arms can act as an entropic bristles to interfere with the...
متن کاملMapping arm-DNA-binding domain interactions in AraC.
AraC protein, the regulator of the l-arabinose operon in Escherichia coli has been postulated to function by a light switch mechanism. According to this mechanism, it should be possible to find mutations in the DNA-binding domain of AraC that result in weaker arm-DNA-binding domain interactions and which make the protein constitutive, that is, it no longer requires arabinose to activate transcr...
متن کاملStrengthened arm-dimerization domain interactions in AraC.
Constitutive mutations were sought and found in the N-terminal arm of the Escherichia coli regulatory protein of the arabinose operon, AraC protein. A new mutation, N16D, was of particular interest. Asn-16 is not seen in the crystal structure of the AraC dimerization domain determined in the absence of arabinose, because the N-terminal arm 18 residues are disordered, but in the presence of arab...
متن کاملMutational analysis of residue roles in AraC function.
The previously isolated hemiplegic, induction-negative, repression-positive mutants, H80R and Y82C, were found to be defective in the binding of arabinose. Randomization of other residues close to arabinose in the three-dimensional structure of AraC or that make strong interactions with arabinose yielded induction-negative, repression-positive mutants. The induction and repression properties of...
متن کاملConstitutive mutations in the Escherichia coli AraC protein.
The Escherichia coli AraC protein represses and induces the araBAD operon in response to the absence or presence of l-arabinose. Constitutive mutations in the AraC gene no longer require the presence of l-arabinose to convert AraC from its repressing to its inducing state. Such mutations were isolated directly by virtue of their constitutivity or by their resistance to the nonmetabolizable arab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical biochemistry
دوره 295 1 شماره
صفحات -
تاریخ انتشار 2001